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Recently Strichartz proved that if p is locally unlformly a-dimensional on R¢
then

1 1/2
sup <WLT I(,uf)AI"> SClfllzgy VS eL(w),

where 0 < a < d, and B, denotes the ball of radius T center at 0; if u is self-similar .
and satisfies a certain open set condition, he also obtained a formula for the « so
that 0 <lim supy_, (1/797%) {5, |(1s) *|> < c0. The a can serve, in some sense, as
the dimensional index of the ‘measure p. By using the mean p-variation and the
Tauberian theorems, we extend the first inequality. and its variants to p, ¢ forms,
and give necessary and sufficient conditions on yu for such inequalities to hold; we
then use the mean quadratic variation to study some self-similar measures x on R
which do not satisfy the open set condition: the w’s that are constructed from
S, x=px, S,x=px+ (1—p), 1/2<p <1 with weights 1/2 each. The index o for p
corresponding to p= (\/3 —1)/2 is calculated. The expression for such a is
significantly different from the one obtained by Strichartz. ~ © 1992 Academic Press, Inc.

1. INTRODUCTION

Let B,(x) denote the unit ball of radius r with center at x, and write
B,(0) as B, for convenience. A positive o-finite Borel measure 4 on R is
called locally uniformly a-dimensional, 0 <a <d, if u(B,(x))<Cr* for all
O<r<1, xeR? This class of measures was introduced by Strichartz
[Str 1, Str 2] to study the Fourier transformation of fractal measures. He
showed that if x4 is such a measure, then there exists C,; >0 such that

‘ 1 2 o S

sup ( d—uf ‘(.uf) A |2> < C ”f”LZ(u) VfELZ(.U)a - (L.1)

T=1 T By : e

where du, = f du. Moreover p 1s absolutely continuous with respect to the

a-Hausdorff measure w,(which is not o-finite on R“), and hasa decomposi-
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428 KA-SING LAU

tion u=¢ dw,+v where v is null with respect to w,; if ¢ = y where .E is
a w,-regular subset of R? (in this case, « is necessarily an integer [F1]),
then there exists C,> 0 such that

lim
Tr— oon @

| 1w r=Cf fiPdo,  VieLw.  (12)

Identity (1.2) generaiizes simultaneously the following celebrated results:

(i) The Plancherel formula where p is taken to be the Haar measure
on R (e =d).

(ii)) The Wiener identity for bounded measures u on R?,

1 A2 ’ 2
Jim oo | ,, \AP=C 3 Inx} (1.3)
(@ =0).

(i11) The identity of Agmon and Hormander [AH ], which takes the
form (1.2) with u a surface measure on a C'-submanifold of R? (« is an

integer between 1 to d).
It also partially extends

(iv) The Besicotvich. idehtity of almost periodic functions,

lgnoo——f IFP= 3 ol

n=1

where F(x)=Y%_, c,e™ %, a,, xe R% c,eC.

Strichartz then used (1.1) and (1.2) to study the multlphers and the
restriction theorems of L”(u) to LY(R¥) [Str2], and in a sequence of papers
following [Str3—Str57], he made further investigation of (1.2) for seif-similar
fractal measures, and also extended some results to Riemannian manifolds.
.- There is yet another well-known formula in this direction: The Wiener—
‘Plancherel identity on R [W1], -

" 1 T - .
hmi—]—,’j_T’|f.|2——hm5ﬁ w1 (1.4)

T &

whenever either one limits éXists where 4, g(x) = g(x +h)— g(x+h),
h>0, and W( f ) is the Wiener transformation (lntegrated F ourier transfor-
mation) of f,

dt+f f(t)(e"z-’“"’a—l)

— dt.
<1’ —2mit .

Wi ={ L0

14 =1 — 27t
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Recently the identity has been extended to R? in [BBE, B, LW]. The
related - Banach ‘spaces, dualities, isomorphisms, multipliers,. and Hilbert
transformations were studied in [CL1-CL3, H, L, LL}.

By using Wiener’s Tauberian theorem, it is not difficult to replace (1.4)

1 2 _ OO 2
Jim sl 0= [ 14

where 0 <o < 1. Note that if p is a bounded Borel measure on R, and if

f=4, then W(f)=F+c ae. where F(x)=pu(—o0, x]. Consequently we
have : .

1 T o0 . ) :
Jim s | WA=l e [ e = x A1 (1)

analogous to (1.3).
- For a positive mekasure u on R? we will call .

lim sup

1 ‘
msup s | mQk(x))? de

(0,(x) is the cube of size (2h)%, centered at x) upper a-mean quddmtic
variation (m.q.v.) of u. If the above limit exists, we 81mp1y call it the
a-m.q.v. The m.q.v. index o of u is defined to be

fla:0<li | 2 il

_m {cx im sup (Zh)dwf dﬂ(QAh‘(x))4; x}, |

Note that the above set is 'nonempty, it "always _. contains  a=d. (For
otherwise, the zero of the limit supremum as 4 — 0 imp‘liés that

1 |
up fw w(Q4(x))? dx < 0.

h>0

By [HL], u is absolutely continuous with du/dx = g in L*(R) and

f u(Qg(xS)de=j gz-

: 1
0=l P =
Hence u =0 and is a contradiction.) The 1ndex o can serve, in some sense,
as the dimension of the measure .
For the proof of (1.1) and - (1 2) in [Str27], and also in [Str3 Str5] the
technique depends heavily on the evaluation of the Gaussian kernel in
order to get hold of the locally uniformly a-dimensional property of u and
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its Fourier transformation. Identity (1.5) reveals such a relationship more
explicitly: Our goal in this paper is to make use of the m.q.v. (and more
general, the mean p-variation) to investigate the fractal measures. One of
the major results is to prove, for 1< p < ¢< o, a necessary and sufficient
condition of u on R? for the inequality :

1 1/p ‘
. Sl}tgl <(2h)d+a(p—1) de || (Qn(u))” du> <C Hf“Lq(#) VfeLu)
| (1.6)

to hold (Theorem 2.3). By using a special type of Tauberian theorem, we
can reduce the above for 1< p<2, p<g< 0, to

1 . NP
sup <Td—aJBT|(#f)A|P> < C NS Lo VfeLi(p). (1.1

T=1

(Theorem 3.5). In particular for p=g=2, the condition on u reduces to
Strichartz’s condition of locally uniform o«-dimension. The above
inequalities can also be extended to the case of lim sup (Theorems 2.8, 3.8).

Recall that a regular Borel measure u on R? is called a self-similar
measure [H] if p is a probability measure and satisfies

p= ) aue S

' j=1
where S;(x)=p, R; x+b; with 0<p,<1, R, rotations on R and b,e R?,
j=1,..,m. Strichartz [Str4] investigated such u with ‘the {S;}7_,
satisfying the “strong open set condition,” and determined the dimensional
index o of u explicitly. An improvement of his result is given in [LW].
Specifically if « is such that

mn

D ap; =1, (1.7)

Jj=1

then

1 .
2=z | 1l*=p(T)+ E(D), (18)

where lim,_, o E(T)=0, and p(AT)=p(T) # 0, or p=constant#0
according to {—In p;}’_; is arithmetic or non-arithmetic. In the first case
In A, A>1,is the gcd. of {—Inp,;}7_,. Note that if a;, j=1, .., m, are the
nature weights (ie., ‘a;=p; ), then o equals the dimension of the
self-similar set induced by the similarities {S;}/,. S ‘

i In the second part of the paper we make an attempt to study:the
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self-similar measures which do not satisfy the open  set condition; we
consider self-similar measures u on R with p,=p,=p, 1/2<p<1, and
a, =a,=1/2. The situation is more complicated -than the previous case
(where the corresponding p is between 0 and 1/2). The measure p can be
identified, up to a scaling and a homothetic translation, with the distribu-
tion function F of the random variable X =3%_, p"X, where {X,}° , are
iid. Bernoulli random variables (i.e., X, takes values {—1,1} with
probability 1/2). The study of such distribution has a long history (see, e.g.,
[E, G, S, Wi]). It follows from a theorem of Jensen and Wintner that F is
either purely absolutely continuous or purely singular. It is also known
that for p=2"'" n=1,2,.. [Wi], or for almost all p close enough to 1
[E], then the distribution of F is absolutely continuous, and F’ e L*(R). In
this case the m.q.v. index of F is 1. On the other hand if p=6"" where 6
is a Pisot—Vijayaraghavan (P.V.) number (i.e., 8 > 1 is a root of an algebraic
equation, and all its conjugate roots have modulus less than 1), then F is
purely singular. A general classification of F between these two types is still
open.

* Our second main result is to evaluate the precise o for the sclf-s1m11ar
measure y with p = (\/g— 1)/2 (note that p~!is a P.V. number, it is a root
of x> — x — 1 =0) (Theorem 4.4): For p_(ﬁ—1)/2 the m.q.v. index « of
u is. given by

(4p*) —2(4p*)* —2(4p*)+2=0 o 19)

(o =0.9923995 ...). Moreover (1 8) also holds for such u and .

The main idea of the proof is to use the invariant property of ;. to derive
some identities for the a-m.q.v. (Lemma 4.6), which eventually reduces to
the well known renewal equation f= f v+ S on [0, ), where v, S are
given, v is a probability measure, and S is a “directly” Riemann integrable
function [Fe]. The solutlon S is known and o can hence be found as in
(1.9).

The formula obtained in (1.9) is markedly different from (1.7), and a
general pattern for the m.q.v. index of the invariant measures for
1/2<p <1 is not known.

We organize ‘the paper as follows: in Sectlon 2 we will define certain
mean variations of 4 and show that they are the necessary and sufficient
conditions for (1.6) to hold. In Section 3 we use certain types of Tauberian
theorems (which are proved in [LW1]) to establish (1.1)" and its variants.
The results on self-similar meaures are proved in Section 4. Some further
remarks and open problems-in connection with the random variable
>®  p"X,, 1/2<p<1, and the Hausdorff dimension of the graph of
>, p"R, (R,s are the Rademacher functions on [0, 1]) are also dis-
cussed. Finally we give an appendix which is an interpretation of the proof
of the main lemma (Lemma 4.6) for (1.9) by symbolic dynamic diagrams.
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2. MEAN p-VARIATIONS
. We will use |E| to denote the Lebesgue measure on any Borel subset in
R% and Q,(x) the half open cube j_l(x —h; x;+h], where
x=(x_1,...‘, xd), h>0. L
"~ LEMMA 2.1. Let u be a o-finite Borel measure on R¥, and let g be a Borel

 measurable Sunction. Suppose g(-) p(Qu(-)) is zntegrable with respect to the
Lebesgue medsure, then

J., 0 (Q4(u)) du= j [ e ar dutw).
On(u) :
'Proof. It follows d‘1rect1y from the Fubini theorem.

LEMMA 2.2. Let u be a positive o-finite Borel measure on R?, then for
any a € Rd h> O

S
22 1(Qu(@) < ), H(Q0) S U( Q@)

Proof. Let E ,j=1,..,2% denote the 2¢ quadrants of Q,(a), then
Qh(u)— ]_1 , and ueE implies that E, < Q,(u). Hence

1 1
HE) = f WE) du< f H(Q(w)) du

and the first inequality follows For the second mequahty, we observe that
0,(u) < Q,,(a) for any ue Q,(a), so that

el M@ i< [ p(Qui@) du= Q@)

“For 0<a<d, let M2 be the class of complex valued aﬁmte Borel
measures i on [Rd such that

» : . _ 1 e . 1/p .,
by 1= sup [ @iy @) <o @)

o<n<t \(2R)THHPTD

if 1< p<oo, and

Iy = sup  sup T 1} (Qu(w)) < o0
Uil 1= 300, 580 575 1 04
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if p=o0, where .[i| denotes the:total variation of pu. Note that for
1< p< oo, M’ is a normed linear space but not complete. That pe M7’ is
equivalent to |u| being locally uniformly «-dimensional; for p=1,
Lemma 2.1 implies that

. :
1= 8 u)) di
Il = sup s [ 1110,00) di

= sup 1dtd|yl ()

O<h<l »(Zh)a fIR" th(u)
= |ul(RY);

for a=d, 1<p<oo, it follows from [HL] that peIN? 1mp11es that U is
absolutely continuous and du/dx = g is in L?(R) and

1 ‘ i/p
iy = Jin s ([ (a7 i) = gl
~ By using Lemma 2.2, it is easy to see that for 1 <p<oo,

peIy < sup (2h)” “(”_”Z |1l(Qn(a))? < oo, 2.1y
O<h<1 .

the summation is taken over all the a’s belonging to the A-mesh, i.e.,

ae (2h)Z° The class M? in the form of (2.1) has been used to study the

theory of multifractals (see [F2]).
For any Borel measure p and for any Borel measure measurable function

fon RY we use u,to denote the measure such that du,= f dp.

THEOREM 2.3. Let 1<p<g<oo, 0<a<d, and let p be a posmve
o-finite Borel measure, then |, € M? for all fe L9(pn) with

||ﬂf”sm" S C “f“ LA(y)

forsomeC>Olfand0nlyzfueim r=p(q——1)/(q——p)v(r=.1zfﬁ:q:l;
r=o00 if p=qg=00). -

Proof. We will consider the case 1 < p < g < oo only, the cases p=1, or
g = oo only need some obvious adjustments. For simplicity we will make
use of the modulus of y in (2.1)".

To prove the sufficiency, we note that

o\ 1/q |
A du) Q)

i(a)

@ <[
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where 1/g + 1/q’ = 1. The Holder 1nequahty hence implies that

~e(r=1) Z Iul(Qh(a))”

plq '
<h‘°‘"’““2(j |f|_qdu) - w(Qu(@)”

Qh(a)

) (r—q)/q ply
<h—Hp—1) <Z M(Qh(a))p/q -q/(q—p)) <ZJ | f19 d,u)
a a “Qnla)
v 1 N
< (0T w@u@) ) 1V
Since pe M, it follows that p, e 92 and (2.2) follows.
For the reverse inequality, we let ‘
f= M(Ql1(a))(p_1)/(q—p)'XQ;,(a)a
ac A :
where A is a finite subset of the 24-mesh, then
) 1/q
Wl =( % w@u@y) "
\ae A
and ||','uf,||gﬂ5 is equivalent to
| | 1p
sup (0% (Qh(a'))”)
O<h<1 - a
= sup (K0TS @) [ g duf )
O<h<1 a laed Qn(c’) .
. . ' 1/p
- = sup <h_°‘""” 2 M(Qh(a))“’“”/("_”’M(Qh(a))>,
Q<h<1 ae A
. 1/p
= sup (h0D 3 @@y )
O<h<1 ‘ae A :

The assumption ||p/ ]l gr < C Il 2y yields

sup ( ~str-1 Y u(Q,xa)))Wscl(z u(Q,xa)))w.

O<hxl ac A aeA

A direct calculation hence implies that -

sup AP ST w(Qu(a)) < CYeh.

O<h<l '™ ae A




FRACTAL MEASURES AND MEAN p-VARIATIONS 435

Since A is' an arbltrary finite subset of the 24-mesh, we can now take the
sum over all’ the a’s in the A-mesh, and hence /2 eMmr.

" As special cases of _the above theorem we have

COROLLARY 2.4. Let 0<a<d, and let u be a positive o- fzmte Borel
measure on R, then : »

(i) u is locally uniformly a-dimensional if and ohly'if there exists p“> 1
(and hence all p>1), and C>0 (depends on p) such that

Il S C 1SNy forall feLP(n)
(ii) For 1< p< oo, ue M if and only if there exists C>0 such that

Il S C NNy Sorall feL=(u)

Let 1 and v be two positive measures on R? we say that u is null with
respect to v (u<€v) if for any Borel subset E, u(E)<oo implies that
v(E)=0. This definition was introduced by Strichartz [Str2], he proved
that -

THEOREM 2.5. Let u, v be positive Borel mesures. Suppose | is o-finite, v
has no infinite atom, and u <Kv, then p=pu, + u2 where du1 = ¢ dv for some
Borel measurable ¢, and 11, <v.

For any positive Borel measure p, we use Li(u) to denote the class of
Borel measurable functions f such that {x:f(x)#0}=U%_, E, and
f/E, e L*(n). Let w, be the a-dimensional Hausdorff measure on R? It is
clear that if ue M, i.e., p is locally uniformly a-dimensional, then u < w,
and hence p=¢ dw,+v where ¢ e L (w,), and v <€w,. We can relax the
condition on u as foll,owing:‘

~ PROPOSITION 2 6 Let O Sos d Let u=0 be a o- fzmte Borel measure on
R?. Suppose

P(x)= sup #(Qh(X)), xeR,

o<h<1 (2/1)“

is finite for p-almost all x, then p<w, and p has a decomposition
=¢ dw,+v where g€ L (0,), and v<Rw,.” ' :

Proof. For any integer k, let

Ek={xe R9: 2% < sup ,u(Q,,(x))<2"+1}

O<hx<l1 (Zh)a
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and let p, = u/Ey, then u=3°_ _ u, and y, is locally uniformly a-dimen-
sional with bound 2%*1, It follows from Theorem 2.5 that u, = ¢, dw, + v,,
and ¢, € L} (w,), v; € w,. The proposition follows by letting ¢ =3 ¢, and
V= Z vk. ' .

Let D, (i, x)=1im sup, _, o u(B,(x))/(2h)* denote the a-upper density of u
at x, and similarly, let D,(u, x)=liminf,_, , u(B,(x))/(2h)* denocte the
a-lower density of u at x.

PROPOSITION 2.7. Let u, ®, and ¢ be as in Proposition 2.6. For &3>0,
there exists a Borel subset F such that /,t(F) <eg, and D (u/F°, x) < ¢(x) for
x € F¢ (the complement of F in R?).

Proof. Let E={xeR?: ¢(x)#0}, then E is a w,— o-finite set, we can
write E as a disjoint union of {E;} with 0 < w,(E;) < co and _[E ¢ dw, < 0.
It follows from [F1, Corollary 2.5] that

) <1 for.w,-almost all x € E,
=0 - otherwise.

D (w,/E;, x

This and [Str2, Corollary 2.37] imply that

lim sup - ¢ dw, < X g, (x) 9(x) o (2.2)

oo ) Inng
for w,-almost all x e R% Also note that

V(Bh(x))
‘?*:’fspw

=0 for w,-almost all x (2.3)
[Str2, Theorem 3.27. Since u < w,, we can replace the statements in '(2 2)
and (2.3) by p-almost all x. For ¢>0, we can choose j, such that
,u(UJ jo+1E)<8 Let F be the union of Ul o+1 £ and the ,u-zerp sets
occurs in (2.2), (2.3). Then for x e F¢, we have " '

= . W(Bu(x)n F)
D, (p/F¢, x)=1lim su -
(W ) h_)op 2h)
<lim su 1 (f | ¢ do —F"v(B ( )))
o 1 x
im0’ R Ungo o e
Z lim sup ! ¢ do, |

j=1 h—0 (Zh) Bh(x)dEi

- < d(x).
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If we replace the sup0<hg1 in‘Theorem 2.3 by lim sup,;_,o," we have

THEOREM 2.8. Let 1< p<g< o0, and let 0<a<d Suppose nois a
positive ‘'o-finite Borel measure on R?, then :

) 1 ,. : 1/p
hm Sup <(2h)d_',.a(p__ 1) JIR" I:ufl (Qh(u))p du) »

h—0

SO sagawy Y/ ELI(H) (24)

provided that

P(x) = sup 1w(Qx(x))

(2h)“ |
is in L*(u) where s=(p—1)q/(q—p). (s=(p—1) if g=oco0; L%u) just
means the class of Borel measurable functions by convention.)

- Proof. We consider the case 1 <p<g<oo only. Note that s=r—1
where r is defined in Theorem 2.3. Since

i
()T <=1 f U@n(u)" du

(Zh)dia(, 5 ). jg()u(Qh(t)) ~'drdu(u)  (by Lemma2.1)
S | M@ duw) by Lemma22)
<2 | (@) duw) I (25)

It follows that cDeLs(u) implies that pe M. Write pu= ¢da) +v as in
Proposition 2.6, then both ¢ dw, and v are in SIR’ . .
Let fe L9(u), then fe L9(v) and by using the same argument as in the
proof of the sufficiency of Theorem 2.3 and as in (2.5 ), We have

1 o
Iim sup (2h)d+a(p—1)f Vo (Qp(u))? du

h—-0

< C lim sup <

h—0

(2h)asj v(Q,,l(u))é‘du> ”f””(v,), ,

<Cytimsup ([ ((QUNERYY di): 1Sty (26

h—0




438 ..+ . . KA-SING LAU

Observe that v(Q,(u))/(2h)*—-0 as h—0 for w,-almost. all u [Str2,
Theorem 3.2], and hence for p-almost all u (since p<w,). Since
v(Qn(u))/(2h)* < DP(u) and D e L°(v), the dominated convergence theorem
implies that the limit in (2.6) tends to 0 as 4 — 0. We hence have by the
Minkowski inequality, and (2.6) that

h—0

L 1 ‘

: 1 v
=limsup s | B Qi) e, (27)

h—0

where fi = ¢ dw,. Again by repeating the same argument as in (2.6), the last
expression is

<y timsup ([ ur (@20 di )11 s
h—>0 R4

<G [ (@) ) 1S Ny

< C 1 W 2ap

and the theorem is proved.

We have a partial result for the reverse inéquality of the above theorem.
First we establish a simple lemma. :

LemMma 29. Let u=0 be a o-finite Borel measure on RY, and let
fel?(u), 1 <p<oo, then

h—0

1 , v ‘ :
Jim s | QU K@) di= 1) i L),

Proof. On RYxRY let

Ap(u,v)={(s,t):5€ Q(u—v+1),teQ,v)}

be the parallelopiped centered at (u, v), let v be the product measure of u
and the Lebesgue measure on R and let F be defined by

'F(u,v)::{g(u) fo=u+w |w <l

otherwise.
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Then

1 . |
ng ., W (@) u(Qu(uD) dt

1 .

~2hy (s) du(s) d

(2h)d.u(Qh(u)) Onlu) JQ;,(t)f(S) ,LL(S) !
v(d,(u, 1)) 1

B (zll?)dﬂ(Qh(u)).iV(A,!(u, 1)) Y 4y F(;, 1) dv(s, 1).

Note that the first factor is bounded, the second factor equals

1
) Dy T O 0 )

for v=u+w with |w| <1. It follows from [Str2, Corollary 2.4] that the
above expression converges to F(u,v) in L?(v) (we are using the
parallelopipeds instead of the balls). Hence

lim

1 | | |
hﬂo(zh)deh(u (ﬂf(Qh(t))/u(Qh(u)))dt:;_‘f(u) .m L),

TueoreM 2.10. Let O0<a<d Suppose uz=0 and ',u eM>  with
D (u, x)= C>0 for u-almost all x, then ’ ' o

o 1 1/2 ' | |
hgn;gf(rz—,amjmmfl(Qh(u))za’u) > C 1 gy V€L

In particular if D,(u, x) <D (u, x)= C for u-almost all x, then

lim

1 1/2
tim (s |, mfl(Qﬁ(u))ng) =gy VL0

Proof. Let ji=¢ dw, be as in Theorem 2.8, then (2 7\ remalns valid by
replacing lim sup with hm inf, i.e., _

fim inf (2h)d+af V1 (@)

1 - 1)2
luhll_'lélf(zh)—dﬂf NEA(Qn(w))” du.
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By Lemma 2.1, we can express the last integral as

[ @iy =] (]

Qn(u)

i (04(0)) dt) 700) (1) d

= @) [ () + () B(Qu(w)) TTh) $(a0) cs

where

&,(u)=

1 v
Gy ) = L (CH/Ey (Q400)) .

Hence by Lemma 2.9,

J,, 2R)ei() B(Qu(w)) TT0) ) dev a0

lim
h—0

(2/1)d+oc
. 1/2

< tim ([ 1oa01? 60 dooa()) I 1 =0
h—0 R4 ‘

We concluded that

lim inf o (2h)d+a J,, 11 (@u(w))I? d

—timint | Q) 2 g o ),

and the assertions follows.

3. THE FOURIER TRANSFORMATION

For'l<p<oo, 0<a<d, we let

B2 = /e L R: 1/ = sup (7= [ 1/17) " <eol,

T>1
then Q-Sf‘is a Banach‘space, and for O<oc < B <n,
B < BL= BE <= LP(dx/(1 + |x|"+ 1))

[LW, Proposmon 4.27. For h>0, we define the transformation W 5, as

(Waf)(x) = f S(») Ei(p) &7 dy,
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where

: . h \“? :
E,(y):= Jlfl -, ™ dE =2n <m> Jap(2rh | y|),

and J,, is the Bessel function of order d/2. The main purpose for defining
such transformation is that if u is a bounded Borel measure on R and
f=40, then for A>0, and for any ball B,(x), u(B,(:))" =(u*xs)" =
i-E,. It follows that

u(B,(x)) = (W, £)(x) | o @3a)

for Lebesgue-almost all x e R% The following theorem is proved in [LW,
Theorem 4.4, Corollary 4.111:

THEOREM 3.1. Let fe B2, we have
(1) Sup d-ocj ,f’2z Sup d1+af ’er1fl2 ’
11 Br 0<h<l h R4

. 1 , 1 .
(i1) lim sup _{f |f| hmsuphdﬂfRdIthl»

d—o
T — o T h—0

2 1 ; 2
fBTm =C, lim oz | IW S

(i) lm

for some C,> 0 independent of f, provided that either one of the limits exists.

Part (iii) of the above theorem can be extended to the ‘fo'lliow'ing case
involving the periodic functions [ LW, Theorem 4.107] which will be used in
Theorem 4.4.

THEOREM 3.2. For feB 2 the following two statements are equivalent:

(1) there exists a bounded multiplicative periodic function p of ﬁeriéd '
A>0 (ie., p(s)= p(As), s>0) such that

im (= | |th|2'¥p(h)) -

h--0

(i) there exists a bounded multlplzcatlve perlodzc functzon q of period
A>0 such that

im (7= ], 1712~ a(D)) =

T — oo TdaBT
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Theorem 3.2(i) and (ii) can be extended to the case 1< p<2

LeMMA 33. Let 1< p<2, Up+1/p'=1, and 0<a<d, then we have

1 p 1/p’ | 1 . Vp
- sup (F:;LT |.f1 ) . <C sup (walehfl (3.2)

T>1 0<h<1
and N .
1 A4 1 ‘ l/p
1 p 1 - p
im sup (775 [, 1/17) " < Climsup (G [ 9r17) 6

| Jfor some C >0 independent of S

Proof. 1t follows from the definition of W, and the Hausdorff-Young
inequality that for 1 < p <2,

(Lm)”

: ) 1/p’
>([L, ) )7 @)

=([7 ([ 1romre @)(zn (-’})/ Jd/;<2nhr))p' rar)

Sd-1

) oo yp -
= hl+olp ( [ Fomy ri===tw(r) dr) ,

where S,_, = {)’?Rdi Iyl=1}, F(ry=r*fs,  1f(rm)|” dy, and w(r)=
(2nr =2J 45(2nr))*". Hence _

1 Up /o0 w1 tp'
_<h—mﬁjﬂd|w,,f|f') >UO F(r/h) r w(r)dr> .

Oﬁ the other ha‘nd,

1 \ P ' o0 4 : 1/
(s, 117) " = ([ ety ar)

It follows from the identity

2(x/2)* !
Tk +1/2) T(1/2) Yo

To(x) = (1 — 22)%= 12 cos(1x) dx > 0

for k>0, xe [0, 1] that w > Cyo, 1 for some C> 0. This implies (3.2) and
(3.3). - ’
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THEOREM:3.4. Let 1<p<2, l/p+1/p'=1, and 0<a<d Suppose
e IMM?, then e BE with

|l gr < C 11l g

and

: ' 1 A\ Ve 1 | 1/p
li - alr <Cl —_— B P
imsup (s [, 1a1”) " < Clim sup (7= [ In(BI7)
for some C> 0 independent of u.

Proof. In view of Lemma 3.3 we need only show that f is actually well
defined as a locally p’-integrable function, and is in B#". Since u is o-finite,
there exists an increasing sequence of Borel sets {E,} with (J, E; = R¢,
|WH(Eg) < o0, and limy , , |u[(RY\E,)=0. Let ‘u, = u/E,, then {f,} is a
sequence of bounded continuous functions. It follows from Theorem 2.3

(taking p=gq, f= Xri\g,) that
Jim e — il < €' lim ] (RY\E) =0,
By (3.1), Theorem 3.1(i), and Lemma 3.3, {i,} is a Cauchy sequence in

B~ and hence converges to some Y € B[ Since VL' < L7 (dx/1+ |x|"*")
w1th

”l//”%lf C ”lp“LP((lxl(l—i—LxI”"'l))

[LW, Proposition 4.2, {Nk} = in L7 (dx/1+ |x|"*1) also. Now let ¢ be
any C*-function with compact support, then

J., ¢du—hmf $ du,

n— oo

— lim f F(x) ) dx = jqu?(x)w(x)dx.

n - oo

This implies that A= zp and /i is m 913”

We can now state the correspondmg results of the last sectlon in terms
of Fourier asymptotics.

THEOREM 3.5. Let1<p<2, p<g<o0,0<a<d, andlet u be apositive
o-finite Borel measure on R then ue M’, r= p(q— 1)/(q — p) implies that

1) N SC UMl oy V€ L) - .34

for some C>0. The converse of the statewient also holds for p = 2.
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Proof.  Inequality (3.4) is a direct- consequence of Theorem 2.3 and
Theorem 3.4. The case for p=2 follows from Theorem2.3 and
Theorem 3.1(i). : :

COROLLARY 3.6. Let 1<p<2, 0<a<d Suppose uz=0 is locally
uniformly o-dimensional, then there exists C >0 such that

“('uf) al Bl <C|/f] LP(u) VfeLf(u).

The converse of the statement also holds for p=2.

COROLLARY 3.7. Let 1<p<2, 0<a<d, and let 1=0 be a o-finite
Borel measure, then ,ueimp implies that there exists C>0 such that

() " gy < C 1/l oy VS ELZ().

THEOREM' 38. Let1<p<2, p<g< oo, 0<a<d Suppose u >0, and

D)= sup i w(04(x)

is in L°(p) where s=(p—1)g/(¢ — p), then

) 1 ‘ L\ P
tim sup (7= [ (1)"17)
T

T — oo
<C|fl LI(p dose) V/fe L),

where p=¢ dw,+ v as in Theorem 2.8,

COROLLARY 3.9. Suppose p =0 is locally uniformly a-dimensional, then

limsup<Td aj (](H) | )Y/z

T oo
S C N 22 deon) er L*(p).

For the limit case, we have the same result as [Str2,'Thedrem 5.5],
which is a consequence of Theorem 2.10 and Theorem 3.1(iii).

THeOREM 3.10. Suppose ,u>0 is locally umformly o- dzmenszonal and
suppose D, (u, x)= D (u, x)= C for u- almost all x, then :

. 1 r 5 172
Th_{ndo (Td——:x J.BT (I(Hf) | ))
<C |If] [Aédwy) _VfG L*(p).
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In [Str2, Theorem 5.5] the lim inf, , ,, case for the Fourier asymptotics
corresponding to Theorem 2.10 is proved. We are not able to obtain such
a result yet since we have not proved the corresponding type of statements
of inf,.  and liminf,_, , as in Theorem 3.1.

4, SELF-SIMILAR MEASURES

We will use W(R) to denote the class of locally Riemann integrable func-
tions f on R such that 3° _ | fitmns 17l < oo. This class of functions
was introduced by Wiener to extend the Tauberian theorem on L'(R)
([W2], see also [T, p.337], [LW]). It is also important in the renewal
theory, as is given by the following elegant theorem ([Fe, p. 348], where
fe W(R) is called a directly integrable function).

THEOREM 4.1. Let 0 # 9, be a probability measure on [0, o), and let S
be a bounded Borel measurable function on [0, o). Suppose [ is Borel
measurable, bounded on [0,s) for all s>0, and satisfies the renewal
equation - :

G =1 % o(x)+ S() (= [ 1= ) do()+ 566) ).

on [0, c0), then f=3°___ Sxc" If in addzrzon Se W([R) then

: (i) if o is non-arithmetic, then f(x)—c+o(1) as x— o where
c=(fg yda)~'- {5 S(y) dy; »
(il) if o is arithmetic, let aZ, a>0, be ihe lattice generated by
the support of o, then f(x)=p(x)+o(1) where p(x)=a(f¢ ydo) -
Yo S(x+ka) is a periodic function of period a.

Let S;: R> R, i=1, 2, be defined by
Si(x)=pyx, SHx)=prx+(1—p,), xeR,

0<py,pa<l Fora,+a,=1, a,, a,>0, there exists a unique probability
measure y which satisfies :

p=apoSi +arpe Syt (4.1)
[F1]. Obviously supp p< [0, 1].

THEOREM 4.2. Let p;, a;, i=1,2, be as above with 0<p,+p, <1, then
the m.q.v. index o is given by ‘

proai+pyaz=1 7
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Furthermore we have: .
() i {_lnpl’_;lﬁ p2} is ”Onfarithm@i.ci then there exists C>0
such that ' ' ' . ,

hm (}ll—f-onv l.u(Qh(x))lz >_03 |

(ii) otherwise, let (In X)Z, A > 1, be the lattice generated by
{—Inp,, —1np2} then

lim (wa j QAP ——p(h))

for some non-zero contmuous function p. such that p(Ah) = p(h), h> 0.

We remark that Theorem 4.2 in the form (1/7'~*) (", |4|? instead of
the mqv above has already been obtained in [Str4] on R with S,,
i=1, .., m, satisfying the “strong open set condition” (see also [LW] for
Ilmprovements) Our approach here is qulte different. The simple proof of
Theorem 4.1 in the following also glves a transparent motivation for the
proof of Theorem 4.4 where S,, =1,2, do not satisfy the open set
condition.

Proof. Note that for any Borel subset E,
E<[0,p,] =>M(E)—a1u(p1 E)
Ec[p, 1—p,]=wE)=0 ., (4.2)
S [1=pa, 1= w(E) = aanlpy E—(1—p,))) |

For h> O we define

o) =[" W@uPdx  and Y= OG).
Let O <p <m1n{p1, pas (p1+ p2)/2}, then ¥ is bounded for 4 > p. By using
(4.2), we have for 0<h<p, . . . .

o= [""" lw@inE+ @

— oo (L—p)=h

= [ Qulpr NP4 a2 [T I Qupies N

— (I—p2)—h

o

1+ h/p1
—piat [ QNP+ 22 [ (G2

— oo —~h/p)

=paiP(h/p,)+ Pz‘?% D(h/p,)-
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Hence
W(h)=p*a W(hip,) + p;a P (hlps),  O<h<p.
By letting f(x)= S(’(e_"“.“”), x=—In h, we have |

f(X)=pr*alf(x+Inp))+p; @3 f(x+Inp,), x>0,

so that we can rewrite, for x >0,
f=| _ St y) do(y)= | flx— y) do(y)+ S()

where o is the measure supported by the two points In pl,ln i
with weights p;%af, p; a2, respectively, G(E)=0¢(—E) and S(x)=
[Z% f(x—y)do(y). Note that f is continuous and is bounded and
non-zero on (— o0, 0) (since ¥ is bounded for 4> p), and ¢ has compact
support, § # 0 is hence continuous and has compact support, so that
Se W(R); also note that [ ydo(y)<oo. If {—Inp,, ——lnpz} is non-
arithmetic, then Theorem 4.1(i) applies. If { —In p,, —In p,} is arithmetic
and generates a lattice (In A), 1> 1, then Theorem 4.1(ii) applies. -

The case where p; + p, > 1 is more complicated, we will take p, =p, = P
and a, =a,=1/2. It is useful to identify the self-similar measure in (4.1)
with the distribution of the well-known Bernoulli. convolutlon (up to a
~ scaling and a homothetic translation) as follows.

THEOREM 4.3. Let {X,} be a sequence of i.i.d. random variales where X,
takes values {—1, 1} with probability 1/2. Let 0 < p <1, then the measure
induced by the random variable X =Y >_, p"X, is the self-similar measure
defined in (4.1) by the map '

S =pxt+p, Sax)=px—p
wzth wezghts a,=a,=1/2.
Pfoof  We need only show that u satisfies

W(E)=3u(STUE)) + 34(S57 '(E)) | .
for all Borel subsets in R, or equivalently

1 (y 1 (y ) IV
=—F|=—1 —F|= 1 » Ra 4.3
F=3F(2-1)+3F(241), yer @)
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where F is the distribution function of X. We can identify X, as-the
Rademacher functions R, on [0, 1], hence

F<Z——1>= {xe[O,l]: 5 p"R,,(x)gg——l}’

p n=1

=|{rer0.13: £ o onn i (3) 4]

n=1

fref0d] £ o |

Similarly by replacing R,(x)=R,, 1((x‘v+ 1 )/2), we can show that |

, - - _ _
F(—J—;+1>=2 {xe<-, 1:,: Y p"Rn(x)Sy} ,
p . 2 . n=1
and (4 3) follows

It is clear that 1f O<p< 1/2 then Theorem 44 1mp11es that the m.q.v.
index of the distribution of F is a=|ln p/ln 2|. For 12<p<1, F is
absolutely continuous and F’ eL2(R) if and only if « =1, by a theorem of
Hardy and Littlewood [HL]. On the other hand Erdés [E] and Salem
[S] proved if p~'is a Plsot—Vljayaraghavan (P.V.) number then F is a
singular dlstrlbutlon and |F(t)] - 0 as 1 — co. In this case,

= | {2x: xe[ ] i "R,;<x)+p<y}|

=2

limsup%ro |F(x + h) — F(x — h)|? dx = 0

h—0 —

In the following we will give the exact m.q.v. index « for the distribution
F corresponding to p = (\/_— 1)/2. The corresponding p“1 = (\/5 +1)/2is
the srmplest P.V. number. It satisfies the algebraic equatlon p*+p—1=0,
so that p>=1—p and p= (1 —p)/p. Also note that p?<1/2<p, and p? p
are symmetric about 1/2, i.e., p — (1/2) = (1/2) — p? v

Now let S;:R—> R and u be deﬁned as in’ (41), with p, =p,=p and
a;=a,=1/2. Then S;(y)=p~ 'y, S;(y)=p 'y —p so that

WE) = 3u(p ~'E) + 3u(p~'E—p). , (4.4)

From this we have for E< [0, p?], u(E)= (1/2) u(p ~*E). It follows that |

1 .
u(E)=§u(p“‘E)= ---=2,,_1u(p“(”‘”E) if E<[0,p"],n>2.

(4.4)
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Also the symmetry of u about 1/2 implies that for any Borel subset E in
[0, 117, , ,

WE)=p(1—E). (44"

THEOREM 4.4. Let p= (\/g —1)/2, and let u be the corresponding
self-similar measure. Suppose 0 <a < 1 satisfies

(4p%)° —2(4p*)* — 2(4p*) + 2 =0, (4.5)

then o (=0.9923994..) is the m.q.v. index of . Furthermore there exist
continuous multiplicative periodic functions p, q # 0 with period p such that

: 1
() tim (s [ 1W(@u0)1— p()) =0

© tim (=], (A — () -

The proof of (i) depends on the following two technical lemmas and the
renewal equation; the first lemma refers to some error estimations arising
from the main identities in the second lemma. Part (i1) is a direct
consequence of (i) and Theorem 3.2

\
%

LEMMA 4.5. Let p and p be as in T heorem44 then 'the following
integrals _ : '

P2+ h p+h W23
I lu(Qh(x))l2 [ m@aenrz jo Q4N

pe— p—h

are of order o(h") as h— Ofor some n > 2.

Proof. F or h>0 small enough let N be the largest 1nteger such that
h/p3N<p Let A(h)= ) 2 5 [1(Q4(x))]?, then by (4.4),
2>1/2

A(h)"? <% <fp22+hh . <Qh(p (E)) 2) 1/2 +% (J.:zjhh ﬂ (Qh/p <g __p>)

(A (h) 2 4+ A,(h)Y?), say.

l\)lr—

By a change of variable y = x/p — p, we have

hip ' hp
AW =p [ W@y (IS0 | T QIR
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Let E=[O0, h/p], then h/p*N <p? implies that E< [0, p?V*']. By (4.4)
and a change of variable again, the last expression .

h/p
= 2p(1/4)*¥ fo | Qv+ 1( ¥/ ™))

h/p2N+l

=2p(p/ )™ | 7 Qg (D)< (o).
Also
Ay =(o | o |u(Q,,/,,(x))|2)

~(s I @ )T by e
!
2

Y (ew @)

p*+h/p
(v
pr—h/p

. - 1 - p2+h/p o 2\ 12 .
+5(o [0 (e ,( -0))[) vy

<,Apbph/2 ' 5 leh 122 ' '

<5 lu(Q,,/,,z<x))|) +§( A(h/p))

' P+ h/p? 1 ’

=§< fpz_ . BQuGN) 45 (sl (by (44)).

) |
<5 W) 4 ()Y

A simple inductive argument implies.that' A(h) = O(Nz(p/4)2N ). Since N is
the largest integer so that 4/p*" < p?, we have h/p*™*Y > p% This implies
that h®> (p/4)>¥ where §=2(np—In4)3lnp (=2.587..). If we let
2<n<d, then A(h)= o(h") as & — 0. This proves the assertion for the first

expression.
The second expression equals the first one by (4.4)", the symmetry of u
about 1/2. Finally by using the change of variable discussed above we see

that

h2/3 h23/p2N

J, B@uNP< (/a7 [ (@)1
< (p/4)" = o(h")

as h — 0 also.
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For simplicity we will use the notations

1 p 1 p? :
1) =gz | QU T =gz [ IR@4I

K =iz [ 1(Q4(0) m(@(p™ — ).

LEMMA 4.6. Let p and p be defined as in T heorem 4.4, then
(1) I(h)=(1/(2p*))(J(h/p) + K(h/p));
(1) J(h) =371 (1/(4p*)"Y I(h/p") + E,(h);
(iti) K(h)=(1/(4p*)) I(H/p) + (1/(4p*)*) I(h/p*) + E;(h),
where |E;(h)| = o(h®), i='1, 2 as h— 0 for some &> 0.

We remark that the proof of this lemma can be represented in dynamics

diagrams (module the error terms). It is given in the Appendlx for
reference.

Proof. (i) By using (4.4), and a change of variable, we have"

I(h) = 4h1+“j lu(Qh/p(x))+u(Qh/p(x pHI?  (by (44))

=Z;z!1)+_°‘_: [1(Qp(x)) + 1(Quy(p® —x))I*  (by 4.4)")

~ i (2] 0 +2 [ w0 mQule? =)

To prove (ii), we first observe that

1 e
= | @)

= ( f;“hﬁf_ ) QX))

= h<§ [ @I+ j 1u<Q;(x))|2>

P
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where e,(h/p) is defined in the obvious way. Forn>2, 0 <h?*? < p"*?

N
] QG

p

. n—2 1 p?
N <£> pl+o .[ 3 Il/"(Qh,/p"_z(x))I2

4

1 ( 1,
(4p )y 2 (4p)

Let N be the largest number so that 0 < /4/p>Y < p? as in Lemma 4.5, then

KHlp™ ")+ " w) 46)

J(h)=h11+a<fow+l+ Zf )Iu(Qh(x))l2

= ealh) + 2 (Wl(h/p”"l)+Wel(h/p"—l)>
3 g K00+ Exl),

where

| 1
E\(h) = ey(h) + 2 N e (") + Z Wl(h/pn_l)_

n=2N+1"

The first two terms are of order o(h®) for 0 <& <#n—2 by Lemma 4.5. The
last term is also of order o(h®) for some ¢>0 by noting that 0 <a <1,

4p*>4p > 2, so that it is dominated by

3N 0
1
Z

+ N
Gy
3N pn p 2N .
=h—-2 2- 3N —6N ( I 2—3N
Y 4n+ <Cp <4) +

n=2N

=C(2p)~ " +27°

v

For (iii), we write

;1.

K(h) = h1+oz

([ 417+ e meis—s

=T1+T2+T3, Say.l
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By applying the previous technique and the symmetry property of u about
1/2 (ie., (4. 4)") we have |

2 1 P
2= (§) s [ 10t 1@t~ 0)

_(P\'_L | 2
—(4) hlﬂfpzu(Qh/pz_(fC)) @p a)zf(h/p )+ es(h),

where es(h)=o(h®) as ¢ =0, by Lemma 4.5. By a change of variable of
y=p*—x for the x in T;, we see that T, = T3 Also

3

Ty= gtz [ HQu(x)) W(Qup(0 — 3)) + eah)

2

= |, Q) Qa1 = X))+ Q1 = x = p))} + e4(h)

1
= 2 UHD™) + K(hp?) + eo(h),

where e4(h) o(h®) as h— 0. (The second identity makes use of (4.4)

applied to p? < p—x<p for 0<x < p?; the last equality follows from (4.4)'

and 1—p=p2)
Finally combining the above identity and (i), we have ‘

K(h) = (I(h/p?) + 2J(h/p?) + 2K (h/p®)) + Ez(h)

1
(4p%)

{ 1 ) ' B
=@ I( /p)+(4 a)zl(h/p )+E2(h) ~ | (4.7)

Proof of Theorem 4.4, Write ¢ =4p~ (>2) By Lemma 4.6, we have ,
I(hy=2¢"'(J(h/p) + K(h/p)) |

— (Z c—"l(h/p"+1)+c—11(h/p)+c 2I(h/p? )>+E(h)

n=1

where E(h) is defined in an obvious way, and is of order o(k°) as A — 0.
By letting x = —In h, f(x)=1(e™ ™), S(x)=[_% f(x+ y) dv(y)+ E(e ™),
we can rewrite the above equation as

fey=[" flct ) dv(y)+ Ble)

=[ fe=n B+, xz0,
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where the definition of v and ¥ are self-explained. Note that S is not identi-
cally zero, bounded with |S(x)| = o(e*e") as x — 0. Also note that the
weight of ¥ is given by :

B °°‘_nl | '_2 4c*—2
1<,§f7 e ) He—1y

which equals 1 if and only if ¢*—2¢c>—2c+2=0. The equation has
three roots but only one satisfies ¢>2. It follows from the hypothesis
of o that ¥ is a probability measure. Moreover [ y d¥(y)< co. Hence
- Theorem 4.1(ii) implies that f is equal to a non-zero multiplicative periodic
function p, asymptotically at oo, i.e., |

lim (Z(h) = p1(h)) =0,
Observe that

1 ! _ |
e || 1@ = 20(h) + 1(h),

and the relationship‘, of I(h) and J(h) in Lemma 4.6, wé have -

1 1
hh—IH) <h1+oz J;) I.u(Qh()"))|2 "—p(h)>= 09

and the proof of (i) is complete. Part (ii) follows from (i) and Theorem 3.2.

We remark that we are not able to find a general expression of the m.q.v.
indices of the self-similar measures u, where p~' are P.V. numbers, in
particular, for the next most important P.V. number: the smallest of
such a number, which is a root of x> —x—1=0 [G]. Also there is a well
known open problem in this direction: determine 1/2 <p <1 so that K, 1is
absolutely continuous; the problem is a consequence of characterizing
1/2 < p <1 so that u, has m.q.v. index 1.

To conclude this section, we let {R,} %

be the sequence of Rademacher
functions and let o

n=1

R(x)= Y 27PR,, xe[0,1].
n=1

The dlstrlbutlon function F of R is partially known (F can be identified

with p, with p=277) from Theorem 4.3, Theorem 4.4, and their remarks.

If the distribution function F is absolutely continuous and F' e L? for some

p> 1, then the Hausdorff dimension of the graph of Ris 2—f [HLI1, PU],

and the Hausdorff dimension of the level set is 1 — f a.e. [HL2]. By using
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a dynamic argument, Przytycki and Urbanski [PU]. proved a more
striking result: if 2# is a P.V. number, then the Hausdorff dimension of the
graph is less than 2 — 8. This is in contrast to the result that the “box”
dimension of graphs of this type (including the Weierstrass function) is
2 — B, and the general belief that the same is true for the Hausdorff dimen-
sion. In connection to Theorem 4.4, it is natural to ask: If F has m.q.v.
index a, what is the exact Hausdorff dimension of R in terms of « and f?

-APPENDIX

In the folloWing we will summarize the self-similar propefty (4.4) and the
proof of Lemma 4.6 into the following symbolic dynamic diagrams. .

(al) 4 (a2) = - (a3)

sevl } } } } | N } { — -
0 pt P p? i P 1 0 p? P 1 0 i 1
(b)

—_—3 o~ —3 +ﬁ

——t—A I } | i } i

o p? P 0 p? p O p? p
(c)

— —_—

- 5 —>

0 P p> 0 p? p
(d) | y

r 2 3 > —

} } } i 1 N Y t 1 4t i 1+t i |

0 et P p? P 0 p? p O . p2 p O p? P

Diagréms (al) and (a2) represent the self-similaf property applied te
the ‘intervals [p”*?!, p"], n>1 (see (4 4) and (4.4)"). Diagram (a3)is the

reflection of the interval [1/2 1] to [O, 1/2] (opp031te dlrectlon) due to the
symmetry of u with respect to 1/2. : ‘

In (b), (c), and (d), the pairs of arrows represents the regions of the
quadratic integrals associated with the directions; e.g., the first one in (b)
and (d) means

[" @iz and [ u(@u(x)) m(Qu(p?~x)),
P 0 : . o

respectlvely
-Diagram. (b) represents the change of the regions of 1ntegrat10n (with
dlrectlon) of Lemma 4.6(i) after applying (a2) and (a3). The application of
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(a2) (and also (al)) produces a factor of 1/(4p)* to the 1ntegral -and the
variable & changes to A/p." :

Diagram (c) represents Lemma 4.6(ii), applymg (al) to eac‘l region
[p"*!, p"], n=2, repeatedly to land on [p p] The error terms are
omitted. -

Dlagram (d) represents Lemma 4. 6(111) (actually 4.7)) by applying (a])
twice to the interval [p* p], n=1, to produce the first summand (7 2 in
the proof), and applying (al) and (a3) to [0, p*] (the same for [p3 p%])
to produce the last two summands of (d) (7 in the proof). '
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